
Aaron Parecki
aaronparecki.com

OAuth in Native Apps:
It's worse than we thought.

OAuth Security Workshop
April 2024 • Rome

OAuth 2.0 for Native Apps (RFC 8252) Summary
• The client MUST use the system browser, not embedded web views

• MUST be treated as a public client

• The client MUST use PKCE

• Redirect URLs can be:

• custom URI scheme (com.example-app://redirect)

• app-claimed https URL (https://example-app.com/redirect)

• Loopback address with custom port (http://127.0.0.1:5192/redirect)

• The AS SHOULD NOT automatically redirect without user consent	

• Unless the identity of the client can be assured (e.g. using app-claimed https URLs)

https://datatracker.ietf.org/doc/html/rfc8252

Use the System Browser

To conform to this best practice, native apps
MUST use an external user-agent to perform OAuth
authorization requests.

https://krausefx.com/blog/ios-privacy-stealpassword-easily-get-the-users-apple-id-password-just-by-asking

https://auth0.com/blog/google-blocks-oauth-requests-from-embedded-browsers/

System Browser (vs Web View)
• Platform-specific API to launch a browser

• The browser is not able to be observed or
modified by the application

• Safe to enter passwords, phishing-resistant
MFA, etc

• Domain name is visible in the popup
browser

System Browser

✅ Good for security

✅ Good for third-party apps

❌ Bad UX for first-party apps

MUST be treated as a
public client

native apps are classified as public clients,
as defined by Section 2.1 of OAuth 2.0
[RFC6749]; they MUST be registered with the
authorization server as such

https://datatracker.ietf.org/doc/html/rfc8252#section-2.1
https://datatracker.ietf.org/doc/html/rfc6749

Public Clients

The application can't be deployed with a secret

JavaScript/Single-Page apps: "view source"
Native apps: decompile and extract strings

High score leaderboards
Player 1 9000

Player 4 7800

Player 2 4495

Player 8 2100

Player 5 700

POST https://api.game-server.example/score
 display_name=Hacker&
 score=99999999

Mobile game reports new high score

POST https://api.game-server.example/score
Authorization: Bearer XXXXXXXXXXXX

 score=99999999

Mobile game reports new high score with an access token

“Is this request to the server being made by
a legitimate instance of my application?”

…create a hardware-
based, cryptographic
key that uses Apple

servers to certify that the
key belongs to a valid
instance of your app.

https://developer.apple.com/documentation/devicecheck/establishing-your-app-s-integrity?language=objc

https://developer.android.com/google/play/integrity

via OAuth 2.0 Attestation-Based Client Authentication presented at IETF 119

PKCEbOPC?

POST /token

client_id=XXXXX
&authorization_code=XXXXX !

POST /token

client_id=XXXXX
&client_secret=XXXXX
&authorization_code=XXXXX

?

POST /token

client_id=XXXXX
&code_verifier=XXXX
&authorization_code=XXXXX

:-)

PKCE was recommended for mobile
apps, which can’t use a secret

Is PKCE is a replacement
for a client secret?NO

Interception
/redirect?code=XXXXX

😈

Injection
/redirect?code=XXXXX

😈

Redirect URLs

To fully support this best practice,
authorization servers MUST offer at least the
three redirect URI options described in the
following subsections to native apps.

example-app://redirect?
code=AUTHORIZATION_CODE_HERE&
state=1234zyx

https://example-app.com?
code=AUTHORIZATION_CODE_HERE&
state=1234zyx

Custom URL Scheme

App-Claimed URL Pattern

Redirect URLs in Mobile Apps

Redirect URLs in Mobile Apps

Custom URL Scheme

App-Claimed URL Pattern

No registry

No validation

Any app can claim any URL scheme

Sometimes undefined behavior if multiple apps use the same URL scheme

aka "Universal Links" on iOS

Requires proving ownership of the domain name by the app publisher

Verified on app install and sometimes periodically afterwards

Redirect URLs in Mobile Apps

But...

none of this really matters

Redirect URLs
+

Use the System Browser
+

follow best practices

• Include https redirect URI in authorization request

• Custom URL scheme is still required to launch
ASWebAuthenticationSession

Before iOS 17.4
No User Interaction

• Include https redirect URI in
authorization request

• Custom URL scheme is still required to
launch ASWebAuthenticationSession

• (User already is logged in)

• Universal Link is not triggered

• Browser ends up at redirect URL
loaded in the browser

• Native app has no way to recover

Release Date: March 5, 2024

Before iOS 17.4
With User Interaction

• Include https redirect URI in
authorization request

• Custom URL scheme is still required to
launch ASWebAuthenticationSession

• (User already is logged in)

• Universal Link is triggered

• iOS runs the Universal Link callback

• Native app has to dismiss the active
ASWebAuthenticationSession to resume

ASWebAuthenticationSession in iOS 17.4

• Adds ASWebAuthenticationSession.Callback

• Takes an https URL that is validated the same way as Universal Links

ASWebAuthenticationSession in iOS 17.4

let callback = ASWebAuthenticationSession.Callback.https(host: "example-app.com",  
 path: "/redirect")

url = URL(string: "https://authorization-server.com/authorize")

print("Starting ASWebAuthenticationSession to ", url!, "callback: ", callback)

aSWebAuthenticationSession = ASWebAuthenticationSession.init(url: url!,  
 callback: callback,  
 completionHandler: completionHandler)

ASWebAuthenticationSession in iOS 17.4

Attempting to use another app’s Universal Link as redirect URL

ERROR: The operation couldn’t be completed. Application with
identifier com.example-app.test is not associated with domain
avocado.lol. Using HTTPS callbacks requires Associated Domains
using the `webcredentials` service type for avocado.lol.

After iOS 17.4
With User Interaction

• Universal Link binding is enforced

• iOS runs the
ASWebAuthenticationSession as
expected

Release Date: March 5, 2024

After iOS 17.4
No User Interaction

• No change from previous example
with user interaction

Release Date: March 5, 2024

ASWebAuthenticationSession

• iOS < 17.4 only allows passing custom URL scheme to
ASWebAuthenticationSession

• Any app can put in any scheme, it doesn’t actually launch the app, it just
waits for that scheme to be returned in an HTTP Location header then
dismisses the view and runs the callback

• In order to use a Universal Link as the redirect URI in < 17.4, you have to hack
your way around the API

The Hack

• Find your target application's Client ID (easy)

• Find your target application's custom URL scheme (easy)

• Launch the system browser with a legitimate looking URL under the
attacker's control, passing in the target application's custom URL scheme

The Hack

• Redirect from your server to the target application's AS

• example-app.com -> authorization-server.com

• The AS will redirect to the custom URL scheme, which will trigger the
ASWebAuthenticationSession callback

• authorization-server.com -> example-app://redirect

• If the user already has a session, they might not even see anything!

The Hack

“Example App” starts
ASWebAuthenticationSession using
“lol.avocado://” custom URL scheme
that belongs to another app.

User already has a session, no
interaction needed, authorization
code is delivered to the callback.

PKCE and DPoP didn't help, because
the attacker uses their own secrets to
initiate the flow.

Mitigations

• Use https redirect URIs, and work around the iOS <17.4 limitation

• Don't support custom URL scheme in your app or AS at all,  
even for old iOS versions

• Always require user interaction at the AS web page, 
even with an existing session

